Электроэнергетическая отрасль. Производство электроэнергии в россии. Единая энергетическая система России

Развитие и размещение электроэнергетики в России основывается на принципах, сформулированных еще в плане ГОЭЛРО (1920 г.). Электроэнергетика России играет огромную роль в обеспечении нормального функционирования экономики страны. Обеспечивая НТП, электроэнергетика решающим образом воздействует не только на развитие, но и на территориальную организацию производительных сил, в первую очередь промышленности: передача электроэнергии на большие расстояния способствует более эффективному освоению топливно-энергетических ресурсов независимо от того, насколько они удалены от мест потребления; благодаря возможности промежуточного отбора электроэнергии для снабжения тех районов, через которые проходят высоковольтные ЛЭП (т.н. электронный транспорт), увеличивается плотность размещения промышленных предприятий; на основе массового использования электрической и тепловой энергии в технологических процессах возникают электроемкие (алюминий, магний, титан, ферросплавы и др.) производства, в которых доля топливно-энергетических затрат в себестоимости готовой продукции значительно выше по сравнению с традиционными отраслями; электроэнергетика - важный районообразующий фактор, так, в Сибири и на Дальнем Востоке она во многом определяет специализацию районов и формирование ТПК.

В последнее пятидесятилетие электроэнергетика была в нашей стране одной из наиболее динамично развивающихся отраслей. Она опережала по темпам развития как промышленность в целом, так и тяжелую индустрию. РФ занимает четвертое место по общему объему производства электроэнергии в мире после США, Китая и Японии.

Главный потребитель электроэнергии - промышленность (около 60% всей вырабатываемой энергии). Там электроэнергия используется в качестве двигательной силы и для осуществления ряда технологических процессов. То, что продукция электроэнергетики не может накапливаться, а передается по линиям электропередач, значительно расширяет географию размещения предприятий. Размещение предприятий самой электроэнергетики зависит от расположения топливно-энергетических ресурсов и потребителей.

Важная особенность электроэнергии России - существование энергосистем, объединенных в Единую энергосистему (ЕЭС). Это дает возможность эффективнее распределять электроэнергию по территории страны, управлять балансом электрической мощности (см. рисунок 1).

Основными в составе электроэнергетики России являются тепловые электростанции (ТЭС). Они сосредотачивают 2/3 всей установленной мощности. Но поскольку число часов использования среднегодовой установленной мощности ТЭС как минимум в 1,5 раза больше, чем гидроэлектростанций, то их доля по выработке электроэнергии еще значительнее. Вместе с тем следует учитывать, что теплоэнергетика оказывает наиболее сильное и всестороннее загрязняющее воздействие на окружающую среду.

Среди ТЭС различают конденсационные (КЭС) и теплоэлектроцентрали (ТЭЦ). По характеру обслуживания потребителей различают государственные районные электрические станции (ГРЭС) и центральные, расположенные вблизи центра энергетических нагрузок. ТЭС преобразуют энергию сгорания органического топлива в электрическую. На ТЭЦ пар после турбины либо отправляется к потребителю, либо возвращается обратно в систему, отдав свою теплоту воде, которая идет к потребителю. Поэтому ТЭЦ выгодно строить в больших городах и около крупных промышленных предприятий, т.к. радиус передачи теплоты весьма невелик (10-12 км). В Москве, например, расположено свыше двух десятков ТЭЦ. И хотя максимальная мощность ТЭЦ, как правило, не превышает 1млн. кВт, их КПД больше 70%. Но, тем не менее, первостепенную роль среди ТЭС играют КЭС, несмотря на то, что их КПД всего лишь 30-35%. Тяготея одновременно и к источникам топлива, и к местам потребления, они имеют самое широкое распространение. Насчитывается свыше 70 КЭС мощностью 1млн. кВт и более каждая.

Особо выделяются ГРЭС мощностью свыше 2 млн. кВт. ГРЭС дают более 70% всей электроэнергии России. Крупнейшие российские ГРЭС: Центральный район - Конаковская, Костромская (3600 МВт); Северный Кавказ - Новочеркасская; Поволжье - Заинская; Урал - Рефтинская (третья по мощности в Европе), Ириклинская, Троицкая; Западная Сибирь - Сургутская (работает на попутном газе), Назаровская; Восточная Сибирь - Березовская, Харанорская, Гусиноозерская; Дальний Восток - Нерюнгринская.

В рамках проекта Канско-Ачинского топливно-энергетического комплекса (КАТЭК) ведется строительство мощнейшей ГРЭС мощностью 6400 МВт.

В последнее время среди тепловых электростанций появились установки принципиально новых типов: газотурбинные электростанции (ГТ), где вместо паровых действуют газовые турбины на жидком или газообразном топливе, что в основном снимает проблему водоснабжения и тем самым повышает значение дефицитных по воде районов для их размещения. ГТ готовятся к вводу на Краснодарской и Шатурской ГРЭС; парогазотурбинные установки (ПГУ), в которых теплота отработавших газов используется для подогрева воды или получения пара низкого давления в парогенераторах, ПГУ готовятся к вводу на Невинномысской и Кармановской ГРЭС; магнитогидродинамические генераторы (МГД-генераторы) для непосредственного преобразования тепловой энергии в электрическую, МГД-генераторы готовятся к вводу на ТЭЦ-21 "Мосэнерго" и Рязанской ГРЭС.

Геотермические электростанции (ГеоТЭС), в основе работы которых лежит освоение глубинной теплоты земных недр, принципиально напоминают ТЭЦ, но в противоположность последним связаны не с потребителями, а с источниками энергии. Геотермальные электростанции преобразуют внутреннюю энергию перегретой воды или пара, выходящего из недр Земли, в электрическую. ГеоТЭС строят в тех районах, где происходит заметная вулканическая деятельность. В 1968 г. на Камчатке, в долине реки Паужетки, была сооружена первая и пока единственная российская ГеоТЭС мощностью 11 МВт.

Гидроэлектростанции (ГЭС) являются весьма эффективными источниками энергии. Они используют возобновимые ресурсы, обладают простотой управления и очень высоким КПД - более 80%. На ГЭС занято в 15-20 раз меньше персонала. По этим причинам ГЭС производят более дешевую энергию, чем ТЭС: ее себестоимость в 5-6 раз ниже. На электростанциях этого типа производится 18% всей российской электроэнергии.

Гидроэлектростанция преобразует энергию водного потока в электрическую. Строительство ГЭС требует решения целого комплекса проблем (орошение земель, развитие водного транспорта и рыбного хозяйства, охрана окружающей среды), и лучшим решением является каскадный принцип строительства, когда ГЭС "нанизываются" на реку. Каскады ГЭС сооружены на Волге и Каме, на Иртыше, на Ангаре и Енисее, на мелких реках Карелии и Кольского полуострова, на притоках Амура, на Вилюе, на Свири. К крупным ГЭС относятся электростанции мощностью свыше 25 МВт. ГЭС выгодно строить на горных реках с большим падением и расходом воды. Российские же ГЭС в большинстве своем равнинные, а, следовательно, низконапорные и малоэффективные. Сооружение ГЭС на равнинных реках влечет за собой и значительный материальный ущерб, вызываемый затопление территории под водохранилища.

В России действует несколько крупнейших ГЭС: каскад Волга - Кама (11 ГЭС: Самарская, Волгоградская, Саратовская, Чебоксарская, Камская и др.); каскад Ангара - Енисей (Саяно-Шушенская (6400 МВт), Красноярская (6000 МВт), Усть-Илимская, Братская (4500 МВт), Иркутская); Зейская (Зея) и Бурейская (Бурея) - на притоках Амура.

Гидроаккумулирующие электростанции (ГАЭС) требуют постройки не одного, а двух водохранилищ на разных уровнях. Они предназначены для снятия пиковых нагрузок, и поэтому их целесообразно строить вблизи больших городов. В России действует Загорская ГАЭС мощностью 1200 МВт.

Приливные электростанции (ПЭС) имеют похожий принцип действия, только строятся они на берегах морей и океанов. Первая ПЭС в СССР была сооружена в 1968 г. на Белом море (Кислогубская).

Атомные электростанции (АЭС) используют в высшей степени транспортабельное топливо. При расходе 1 кг урана-235 выделяется теплота, эквивалентная сжиганию 2,5 тыс. т лучшего угля. Эта характерная особенность совершенно исключает зависимость АЭС от топливно-энергетического фактора и обеспечивает наибольшую маневренность размещения среди электростанций всех типов. АЭС ориентируются на потребителей, расположенных в районах с напряженным топливно-энергетическим балансом или там, где выявленные ресурсы минерального топлива и гидроэнергии ограничены. Однако наряду с этими преимуществами АЭС имеет главный недостаток - она несет в себе постоянную и страшную угрозу окружающей среде. 26 апреля 1986 г. произошла одна из крупнейших катастроф в истории человечества - авария на Чернобыльской АЭС.

Атомная электростанция преобразует энергию деления тяжелых или синтеза легких атомных ядер в электрическую энергию. Теплота, выделившаяся в результате ядерной реакции, нагревает до кипения воду, пар вращает турбину и т.д. (аналогично ТЭС).

Россия имеет приоритет в мирном использовании атомной энергии. В 1954 г. вступила в строй первая опытная Обнинская АЭС (Центральный район). К началу 1989 г. в СССР действовало 15 АЭС суммарной мощностью 35 млн. кВт. Ныне действуют 11 АЭС: Обнинская, Кольская (1760 МВт), Петербургская (4000 МВт), Тверская, Смоленская, Курская (4000 МВт), Нововоронежская (2455 МВт), Балаковская, Димитровградская, Белоярская (900 МВт), Билибинская.

В России доля электроэнергии, вырабатываемой на АЭС, составляет 12% (для сравнения: Франция 75%, Бельгия 61%, Республика Корея 54%, Германия 32%, США 18%). По объему производства электроэнергии на АЭС в настоящее время Россия уступает США (в 2,5 раза), Франции и Японии.

Очень перспективной отраслью энергетики является создание ветряных электростанций (ВЭС) и их комплексов. Стоимость электроэнергии на ВЭС ниже, чем на любых других станциях. Преимуществом ВЭС также является ее абсолютная независимость от каких бы то ни было недвижимых объектов. Имеется проект создания сети ВЭС на Кольском полуострове общей мощностью 1000 МВт.

Для электроэнергетики характерны следующие тенденции развития. Во-первых, снижение в топливном балансе электростанций сначала доли мазута, а затем и природного газа, благодаря строительству АЭС и тепловых электростанций, работающих на углях открытой добычи, а также крупных ГЭС (главным образом в восточных районах). Во-вторых, завершение формирования ЕЭС с повышением ее маневренности и надежности путем строительства пиковых электростанций, ЛЭП сверхвысокого напряжения переменного и постоянного тока.

Электроэнергетика является базовой инфраструктурной отраслью, обеспечивающей внутренние потребности народного хозяйства и населения в электроэнергии, а также экспорт в страны ближнего и дальнего зарубежья. От её функционирования зависят состояние систем жизнеобеспечения и развитие экономики России.

Значение электроэнергетики велико, так как она является базовой отраслью экономики России, благодаря ее существенному вкладу в социальную стабильность общества и конкурентоспособность промышленности, включая энергоемкие отрасли. Строительство новых мощностей по выплавке алюминия в основном привязано к гидроэлектростанциям. Также в энергоемкий сектор входит черная металлургия, нефтехимия, строительство и т.д.

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики.. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Производственная база электроэнергетики представлена комплексом энергетических объектов: электростанций, подстанций, котельных, электрических и тепловых сетей, обеспечивающих совместно с другими предприятиями, а также строительными и монтажными организациями, НИИ, проектными институтами - функционирование и развитие электроэнергетики.

Электрификация производственных и бытовых процессов означает использование электроэнергии во всех сферах человеческой деятельности. Приоритет электроэнергии как энергоносителя и эффективность электрификации объясняется следующими преимуществами электроэнергии по сравнению с другими видами энергоносителей:

  • · Возможность концентрации электрической мощности и производства электроэнергии на крупных блоках и электростанциях, что снижает капитальные затраты в строительство нескольких мелких электростанций;
  • · Возможностью деления потока мощности и энергии на меньшие количества;
  • · Легкой трансформации электроэнергии в другие виды энергии - световую, механическую, электрохимическую, тепловую;
  • · Возможностью быстрой и с малыми потерями передачи мощности и энергии на большие расстояния, что позволяет рационально использовать источники энергии, удаленные от центров энергопотребления;
  • · Экологической чистотой электроэнергии как энергоносителя и в результате - улучшением экологической обстановки в районе размещения потребителей энергии;
  • · Электрификация способствует повышению уровня автоматизации производственных процессов, росту производительности труда, повышению качества продукции и снижению ее себестоимости.

С учетом перечисленных достоинств электроэнергия является идеальным энергоносителем, обеспечивающим совершенствование технологических процессов, повышение качества продукции, рост технической вооруженности и производительности труда в производственных процессах, улучшение бытовых условий населения.


Содержание .

1.Введение……….3
2.Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие…………………….. 4
3.Сырьевые и топливные ресурсы отрасли и их развитие ……………… 7
4.Размеры производства продукции с распределением по главным географическим регионам………………………. 10
5.Главные страны производители электроэнергии…….. 11
6.Главные районы и центры производства электроэнергии ……………. 13
7.Природоохранные и экологические проблемы, возникающие в связи с развитием отрасли……………………….. 14
8.Главные страны (районы) экспорта продукции электроэнергетики …. 15
9.Перспектива развития и размещения отрасли ………. 16
10.Заключение ……………………. 17
11.Список используемой литературы………………... 18

-2-
Введение.

Электроэнергетика – составляющая часть энергетики, обеспечивающая электрификацию хозяйства страны на основе рационального производства и распределения электроэнергии. Она имеет очень важное преимущество перед энергией других видов - относительную легкость передачи на большие расстояния, распределения между потребителями, преобразования в другие виды энергии (механическую, химическую, тепловую, свет).
Специфической особенностью электроэнергетики является то, что ее продукция не может накапливаться для последующего использования, поэтому потребление соответствует производству электроэнергии и во времени, и по количеству (с учетом потерь).
Электроэнергетика вторглась во все сферы деятельности человека: промышленность и сельское хозяйство, науку и космос. Представить без электроэнергии наш быт также невозможно.
Современное общество к концу ХХ века столкнулось с энергетическими проблемами, которые приводили известной степени даже к кризисам. Человечество старается найти новые источники энергии, которые были бы выгодны во всех отношениях: простота добычи, дешевизна транспортировки, экологическая чистота, восполняемость. Уголь и газ отходят на второй план: их применяют только там, где невозможно использовать что-либо другое. Всё большее место в нашей жизни занимает атомная энергия: её можно использовать как в ядерных реакторах космических челноков, так и в легковом автомобиле.

-3-
Значение отрасли в мировом хозяйстве, её отраслевой состав, влияние НТР на её развитие.

Электроэнергетика входит в состав топливно-экономического комплекса, образуя в нем, как иногда говорят «верхний этаж». Можно сказать, что она относится к так называемым «базовым» отраслям промышленности. Эта её роль объясняется необходимостью электрификации самых различных сфер человеческой деятельности. Развитие электроэнергетики является неприемлемым условием развития других отраслей промышленности и всей экономики государств.
Энергетика включает в себя совокупность отраслей, снабжающих другие отрасли энергоресурсами. В нее входят все топливные отрасли и электроэнергетика, включая разведку, освоение, производство, переработку и транспортировку источников тепловой и электрической энергии, а также самой энергии.
Динамика мирового производства электроэнергетики показана на рис.1 , из которого вытекает, что во второй половине ХХ в. выработка электроэнергии увеличилась почти в 15 раз. На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы.
На протяжении всего этого времени темпы роста спроса на электроэнергию превышали темпы роста спроса на первичные энергоресурсы. В первой половине 1990-х гг. ни составляли соответственно 2,5% и 1,55 в год.
Согласно прогнозам, к 2010 году мировое потребление электроэнергии может возрасти до 18-19 трлн. кВт/час, а к 2020г.- до 26-27 трлн. кВт./ч. соответственно будут возрастать и установленные мощности электростанций мира, которые уже в середине 1990-х г превысил и уровень 3 млрд. кВт.
Между тремя основными группами стран выработка электроэнергии распределяется следующим образом: на долю экономически развитых стран приходится 65%, развивающихся - 33% и стран с переходной экономикой - 13%. Предполагают, что доля развивающихся стран в перспективе будет возрастать, и к 2020 г. они обеспечат уже около Ѕ мировой выработки электроэнергии.
В мировом хозяйстве развивающиеся страны по-прежнему выступают главным образом в качестве поставщиков, а развитые - потребителей энергии.
На развитии электроэнергетики оказывают влияние как
природные, так и социально-экономические факторы.
Электрическая энергия - универсальный, эффективный
-4-
технически и экономический вид используемой энергии. Важна также экологическая безопасность использования и передачи по сравнению со всеми видами топлива (учитывая сложности и экологическую составляющую при их транспортировке).
Электрическая энергия вырабатывается на электростанциях разного типа - тепловых (ТЭС), гидравлических (ГЭС), атомных (АЭС), в сумме дающих 99% производства, а также на электростанциях, испльзующих энергию солнца, ветра, приливов и пр. (таб.1).
Таблица 1
Производство электроэнергии в мире и в некоторых странах
на электрических станциях разного типа (2001г.)


Страны мира
Производство электроэнергии
(млн кВт/ч)
Доля производства электроэнергии (%)
ТЭС ГЭС АЭС другие
США 3980 69,6 8,3 19,8 2,3
Япония 1084 58,9 8,4 30,3 0,4
Китай 1326 79,8 19,0 1,2 -
Россия 876 66,3 19,8 13,9 -
Канада 584 26,4 60,0 12,3 1,3
Германия 564 63,3 3,6 30,3 2,8
Франция 548 79,7 17,8 2,5 -
Индия 541 7,9 15,3 76,7 0,1
Великобритания 373 69,0 1,7 29,3 0,1
Бразилия 348 5,3 90,7 1,1 2,6
Мир в целом 15340 62,3 19,5 17,3 0,9

5-
Вместе с тем именно рост потребления электроэнергии связан с теми сдвигами, которые формируются в промышленном производстве под воздействием НТП: автоматизацией и механизацией производственных процессов, широким применением электроэнергии в технологических процессах, повышением степени электрификации всех отраслей хозяйства. Также значительно выросло потребление электроэнергии населением в связи с улучшением условий и качества жизни населения, широким распространением радио- и телеаппаратуры, бытовых электроприборов, компьютеров (в том числе использование всемирной компьютерной сети Интернет). С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)
Увеличение расходов на НИОКР в области энергетики значительно улучшило показатели работы тепловых станций обогащение угля, совершенствование оборудования ТЭС, повышение мощности агрегатов (котлов, турбин, генераторов). Ведутся активные научные исследования в области ядерной энергетики, использования геотермальной и солнечной энергии и т. д.

-6-
Сырьевые и топливные ресурсы отрасли и их развитие.

Для выработки электроэнергии в мире ежегодно потребляется 15 млрд. т условного топлива и объем произведенной электроэнергии растет. О чем наглядно свидетельствует рис. 2
Рис. 2. Рост мирового потребления первичных энергоресурсов в ХХв, млрд тонн условного топлива.
Суммарная мощность электростанций всего мира в конце 90-х годов превышала 2,8млрд кВт, а выработка электроэнергетики вышла на уровень 14 трлн кВт/ч год.
Основную роль в электроснабжении мирового хозяйства выполняют тепловые станции (ТЭС), работающие на минеральном топливе, главным образом на мазуте или газе. Наиболее велика доля в теплоэнергетике таких стран, как ЮАР (почти 100%), Австралия, Китай, Россия, Германия и США и др., обладающих собственными запасами этого ресурса.
Теоретический гидроэнергетический потенциал нашей планеты оценивается в 33-49 трлн кВт/ч, а экономический (который может быть использован при современном развитии техники) в 15 трлн кВт/ч. Однако степень освоенности гидроэнергоресурсов в в разных регионах мира различна (в целом по миру лишь 14%). В Японии гидроресурсы используются на 2/3, в США и Канаде - на 3/5, в Латинской Америке - на 1/10, а в Африке на 1/20 гидроресурсного потенциала. (Таб.2)
Таблица 2
Крупнейшие ГЭС мира.

Наименование Мощность (млн. кВт) Река Страна
Итайпу 12,6 Парана Бразилия/Парагвай
Гури 10,3 Карони Венесуэла
Гранд - Кули 9,8 Колумбия США
Саяно-Шушенская 6,4 Енисей Россия
Красноярская 6,0 Енисей Россия
Ла-Гранд-2 5,3 Ла-Гранд Канада
Черчилл-Фолс 5,2 Черчилл Канада
Братская 4,5 Ангара Россия
Усть-Илимская 4,3 Ангара Россия
Тукуруи 4,0 Такантинс Бразилия

Однако общая структура производства электроэнергии серьезно изменилась с 1950 г. Если раньше применялись лишь
-7-
тепловые(64,2%) и гидравлические станции (35,8%), то ныне доля ГЭС снизилась до 19% за счет использования ядерной энергетики и других альтернативных источников получения энергии.
В последние десятилетия практического применение в мире получило использование Ядерной энергии. Производство электроэнергии на АЭС возросло в последние 20 лет в 10 раз. Со времени ввода в эксплуатацию первой атомной электростанции (1954год, СССР - г.Обнинск, мощность 5МВт), суммарная мощность АЭС мира превысила 350тыс МВт(Таб. 3) До конца 80-х годов ядерная энергетика развивалась опережающими темпами по отношению ко всей электроэнергетике, особенно в экономически высокоразвитых странах, дефицитных по другим энергоресурсам. Доля атомных станций в общем производстве электроэнергии мира в 1970г составляла 1,4%, в1980 г. - 8,4%, а 1993г. уже 17,7%, хотя в последующие годы доля несколько снизилась и стабилизировалась в 2001г. - около 17%). Во много тысяч раз меньшая потребность в топливе (1 кг урана эквивалентен, по заключенной в нём энергии, 3 тыс. т каменного угля) почти освобождает размещение АЭС от влияния Транспортного фактора.
Таблица 3
Ядерный потенциал отдельных стран мира, на 1января 2002г.
Страна Действующие реакторы Строящиеся реакторы Доля АЭС в общем производстве электроэнергии, %
Число блоков Мощность, МВт Число блоков Мощность, МВт
Мир 438 352110 36 31684 17
США 104 97336 - - 21
Франция 59 63183 - - 77
Япония 53 43533 4 4229 36
Вели-кобрита-ния 35 13102 - - 24
Россия 29 19856 5 4737 17
ФРГ 19 21283 - - 31
Респуб-лика Корея 16 12969 4 3800 46
Канада 14 10007 8 5452 13
Индия 14 2994 2 900 4
Украина 13 12115 4 3800 45
Швеция 11 9440 - - 42
-8-

К категории нетрадиционных возобновляемых источников энергии (НВИЭ), которые также часто называют альтернативными, принято относить несколько не получивших пока широкого распространения источников, обеспечивающих постоянное возобновление энергии за счет естественных процессов. Это источники связанные с естественными процессами в литосфере (геотермальная энергия), в гидросфере (разные виды энергии мирового океана),в атмосфере (энергия ветра), в биосфере (энергия биомассы) и в космическом пространстве (солнечная энергия).
Среди несомненных достоинств всех видов альтернативных источников энергии обычно отмечают их практическую неисчерпаемость и отсутствие каких-либо вредных воздействий на окружающую среду.
Источники геотермальной энергии отличаются не только неисчерпаемостью, но и довольно широким распространением: ныне они известны более чем в 60 станах мира. Но сам характер использования этих источников многом зависит от природных особенностей. Первая промышленная ГеоТЭС была построена в итальянской провинции Тоскана в 1913году. Число стран, имеющих ГеоТЭС, уже превышает 20.
Использование энергии ветра началось, можно сказать, на самом раннем этапе человеческой истории.
Ветроэнергетические установки Западной Европы обеспечивали бытовые потребности в электроэнергии примерно 3 млн. человек. В рамках ЕС поставлена задача к 2005году увеличить долю ветроэнергетики в производстве электроэнергии до 2% (это позволит закрыть угольные ТЭС мощностью 7 млн кВт), а к 2030г. - до 30%
Хотя солнечную энергию использовали для обогрева домов ещё в древней Греции, зарождение современной гелиоэнергетики произошло только в ХIХ в., а становление в ХХ в.
На мировом «солнечном саммите», проведенном в середине 1990-х гг. была разработана Мировая солнечная программа на 1996 - 2005гг, имеющая глобальные, региональные и национальные разделы.

-9-
Размеры производства продукции с распределением по главным географическим регионам.

Мировое производство и потребление топлива и энергии имеют и ярко выраженные географические аспекты, региональные различия. Первая линия таких различий проходит между экономически развитыми и развивающимися странами, вторая - между крупными регионами, третья - между отдельными государствами мира.
Таблица 4
Доля крупных регионов мира в мировом производстве электроэнергии (1950-2000 гг.), %

Регионы 1950г. 1970г. 1990г. 2000г.
Западная Европа 26,4 22,7 19,2 19,5
Восточная Европа 14,0 20,3 19,9 10,9
Северная Америка 47,7 39,7 31,0 31,0
Центральная и Южная Америка 2,2 2,6 4,0 5,3
Азия 6,9 11,6 21,7 28,8
Африка 1,6 1,7 2,7 2,9
Австралия и Океания 1,3 1,4 1,6 1,7

С глобальной электрификацией связан неуклонный рост производства электроэнергии на душу населения планеты (с 381 кВт/ч 1950г. до 2400 кВт/ч в 2001г.). В число лидеров по данному показателю входят Норвегия, Канада, Исландия, Швеция, Кувейт, США, Финляндия, Катар, Новая Зеландия, Австралия (т.е. особенно выделяются страны с небольшой численностью населения и в основном экономически развитые)
Показатель роста производства и потребления электроэнергии точно отражает все особенности развития хозяйства государств и регионов мира. Так, более 3/5 всей электроэнергии вырабатывается в промышленно развитых странах, среди которых по общей её выработке выделяются США, Россия, Япония, Германия, Канада, а также Китай.
Первые десять стран мира по производству электроэнергии на душу населения (тыс. кВт/час,1997год)

-10-
Главная страна производителя электроэнергии.

Рост производства электроэнергии был отмечен во всех крупных регионах и странах мира. Однако процесс проходил в них достаточно неравномерно. Уже в 1965 году США превысил общий мировой уровень производства электроэнергии 50-го года (СССР - только в 1975 году преодолел тот же рубеж). А ныне США, оставаясь по-прежнему мировым лидером, производят электроэнергии на уровне почти 4 трлн. кВт/ч (таб.5)
Таблица 5
Первые десять стран мира по производству электроэнергии (1950-2001гг), млрд. кВт/ч

67 Япония 857 Япония 1084 4 Канада 55 Китай 621 Россия 876 5 ФРГ 46 Канада 482 Канада 584 6 Франция 35 ФРГ 452 ФРГ 564 7 Италия 25 Франция 420 Индия 548 8 ГДР 20 Великоб- ритания
319 Франция 541 9 Швеция 18 Индия 289 Великобри- тания
373 10 Норвегия 18 Бразилия 223 Бразилия 348
По суммарной мощности электростанций и по производству электроэнергии США занимают первое место в мире. В структуре выработки электроэнергии преобладает производство её на ТЭС, работающих на угле, газе, мазуте (около 70%), остальное производят ГЭС и АЭС (28%). На долю альтернативных источников энергии приходится около 2% (имеется геоТЭС, солнечные и ветровые станции).
По числу энергоблоков работающих АЭС (110) США занимают первое место в мире. АЭС размещаются в основном на востоке страны и ориентированы на крупных потребителей электроэнергии (большинство в пределах 3-х мегалополисов).
Всего в стране действует более тысячи ГЭС, но особенно велико значение гидроэнергетики в штате Вашингтон (в бассейне р. Колумбия), а также в бассейне р. Теннеси. Кроме этого крупные ГЭС построены на реках Колорадо и Ниагара.
Второе место по общей выработки электроэнергии занимает
-11-
Китай, обогнав Японию и Россию.
Большая её часть производится на ТЭС (3/4), в основном работающих на угле. Крупнейшая ГЭС - Гэчжоуба построена на реке Янцзы. Много мелких и мельчайших ГЭС. Предполагается дальнейшее развитие гидроэнергетики в стране. Также действуют свыше 10 приливных электростанций (в т.ч. вторая по мощности в мире). В Лхасе (Тибет) построена геотермальная станция.

-12-
Главные районы и центры производства электроэнергии.

Крупные ТЭС строят обычно в районах добычи топлива(угля), либо в местах, удобных для его производства (в портовых городах). Тепловые станции, работающие на мазуте, располагаются в местах размещения нефтеперерабатывающих заводов, работающие на природном газе - вдоль трасс газопроводов.
В настоящее время из большинства действующих ГЭС с мощностью более 1 млн кВт свыше 50% находятся в промышленно развитых странах.
Крупнейшие по мощности из действующих за рубежом ГЭС: бразильско - парагвайская «Итайпу» на р. Паранда - с мощность свыше 12 млн кВт; венесуэльская «Гури» на р. Карони. Крупнейшие ГЭС в России построены на р. Енисей: Красноярская и Саяно-Шушенская (каждая мощностью более 6 млн кВт).
В энергоснабжении многих стран ГЭС играют решающую роль, например, в Норвегии, Австрии, Новой Зеландии, Бразилии, Гондурасе, Гватемале, Танзании, Непале, Шри-Ланке (80-90% общей выработки электроэнергии), а также в Канаде, Швейцарии и других государствах.
и т.д.................

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

Международный факультет управления

Кафедра экономики

ЭЛЕКТРОЭНЕРГЕТИКА РОССИИ И ЕЕ ЗНАЧЕНИЕ ДЛЯ ЭКОНОМИКИ СТРАНЫ

Научный руководитель:

старший преподаватель

__________ А.С.Громова

Курсовая работа

студентки I курса

________К.К.Мамченко

Томск 2008

Введение 3

1 Электроэнергетика и ее основные функции 6

1.1 Понятие электроэнергетики -

1.2 Экономическая эффективность электрификации 9

1.3 Значимость, необходимость государственного

регулирования в электроэнергетике 10

2 Современное состояние электроэнергетики 15

2.1 Современное состояние электроэнергетики

и перспективы дальнейшего развития -

2.2 Программа развития ТЭК 17

2.3 Мировой опыт 20

3 Реформирование электроэнергетической отрасли 24

3.1 Программа реформирования электроэнергетической отрасли -

3.2 Реформирование РАО «ЕЭС России» 25

3.3 Программа развития электроэнергетики и роль государства 26

Заключение 30 Список использованной литературы 33

Приложения 34

Введение

Электроэнергетика является ключевой отраслью экономики многих стран мира. Это немало для любой страны, а для российского климата и расстояний является достоянием, утратой которого рисковать непозволительно.
Актуальность данной темы заключается в том, что от состояния энергосистемы страны зависят основные параметры ее экономического развития, уровень национальной безопасности и политическая стабильность в обществе, качество среды обитания. На сегодняшний день современному человеку трудно представить себе жизнь без электричества. Мы в прямом смысле слова зависим от поставок электроэнергии. Медицинские, учебные и другие социальные учреждения не могут обходится без электричества долгий период времени. Именно поэтому нам важно знать состояние электроэнергетического комплекса, и именно поэтому государство должно контролировать все процессы происходящие внутри него.

Цель данной работы проанализировать современное состояние электроэнергетики и ее.основные проблемы. Основная задача состоит в том чтобы дополнить уже имеющиеся исследования электроэнергетики России комплексным взаимосвязанным анализом состояния и перспектив развития, посмотреть по-новому на развитие электроэнергетики в условиях перехода к рыночной экономике и интеграции ее в мировое хозяйство.

Российская электроэнергетика, несмотря на кризисные явления последних лет, продолжает оставаться одной из крупнейших в мире. На долю России приходится около 10% мирового производства электроэнергии.

В перспективе значение и роль электроэнергетики в Европе и мире будут возрастать. Согласно прогнозам, ежегодный прирост мирового потребления электроэнергии на ближайшие десять лет составит 3,0 -3,5%. Ее доля в мировом энергетическом балансе должна увеличиться. В связи с этим потребуются огромные капиталовложения. Общий объем ожидаемых мировых инвестиций в данную отрасль оценивается в сумме более чем 2 трлн. долл. Почти 60% из них будет вложено в развивающихся странах, более 30% - в Западной Европе, США и других развитых странах, около 10% - в странах с переходной экономикой, включая Россию.

Начавшийся в мире процесс глобализации рынков энергоресурсов благодаря принципиально новым информационным технологиям, потребности стран в крупных капиталовложениях в разработку новых источников энергии и новых способов ее преобразования и использования, в производство, передачу и распределение электроэнергии остро ставит вопрос о необходимости глубокого реформирования данной отрасли. Страны Западной Европы, а также США, Австралия, Бразилия, Аргентина, Китай и другие приступили к кардинальным изменениям своих электрических хозяйств. Идет процесс расчленения трехступенчатой иерархии естественных энергомонополий. Пересматриваются сложившиеся системы государственного регулирования электроэнергетики с целью обеспечения конкурентной среды. Создаются условия для международных слияний и поглощений и образования мощных транснациональных энергетических компаний, способных функционировать на глобальном рынке. Осуществляются меры по либерализации национальных энергорынков в целях стимулирования экспортно-импортных операций, трансграничного движения инвестиционных ресурсов, научно-технических знаний, информации.

По разным оценкам, для модернизации и реструктуризации российской электроэнергетики потребуется от 20 до 100 млрд. долл. капиталовложений. Значительную их долю могут осуществить только частные инвесторы - отечественные и иностранные - и лишь при условии функционирования рынка и перестройки системы государственного регулирования российской электроэнергетики. Только таким путем можно решить острейшие проблемы, возникающие из-за неплатежей, ненадежности энергопоставок, перебоев в энергоснабжении российских предприятий и населения.

Растущее воздействие на российскую энергетику оказывают процессы региональной интеграции, прежде всего, в Европе. Созданные в разные годы объединения энергосистем стран Западной, Северной и Восточной Европы (UCPTE, NORDEL, CENTREL), а также Балтии (BALTREL) и Средиземноморья (SUDEL) работают по единым стандартам, но на разных технологических принципах. Их интеграция в единую европейскую энергосистему потребует адаптации к наиболее развитой, с жесткими стандартами, интегрированной системе UCPTE других объединений и стран Европы, что сопряжено с немалыми финансовыми и техническими трудностями.

Российская электроэнергетика, до распада СССР и СЭВ практически была изолирована от западноевропейской и мировой, за исключением опыта создания объединенной энергосистемы «Мир», экспорта электрооборудования и строительства электростанций в отдельных странах. Попытки восстановления единой энергосистемы с бывшими республиками СССР, а также подключения к энергообъединению восточно-европейских стран пока не увенчались успехом. Между тем вхождение России в мировую, прежде всего европейскую, энергосистему становится все более актуальным. Интеграция ЕЭС России с существующими в Европе региональными энергообъединениями, создание в перспективе Трансевропейской энергетической системы могут дать значительный экономический выигрыш всем его участникам и прежде всего самой России. Такого рода акции откроют принципиально новые возможности для развития экспорта российской электроэнергии на европейский рынок, широкого привлечения в российскую энергетику западноевропейских инвестиций, позволят получить крупный синергетический эффект от интеграции нацио- нальных энергосистем и региональных объединений европейских стран. Очевидно, что Россия сможет интегрироваться в европейскую энергосистему лишь при условии радикальной реструктуризации отрасли, создания транспарентной, достаточно открытой энергосистемы, способной работать в условиях современного рынка.
Появилась возможность вскрыть специфику отраслевой интеграции между крупной страной с переходной экономикой, какой является Россия, и европейскими странами, находящимися на разных ступенях развития рыночной экономики и в разной степени втянутых в интеграционный процесс.

1 Электроэнергетика и её основные функции.

1.1 Понятие электроэнергетики

Электроэнергетика является базовой инфраструктурной отраслью, обеспечивающей внутренние потребности народного хозяйства и населения в электроэнергии, а также экспорт в страны ближнего и дальнего зарубежья. От её функционирования зависят состояние систем жизнеобеспечения и развитие экономики России.

Значение электроэнергетики велико, так как она является базовой отраслью экономики России, благодаря ее существенному вкладу в социальную стабильность общества и конкурентоспособность промышленности, включая энергоемкие отрасли. Строительство новых мощностей по выплавке алюминия в основном привязано к гидроэлектростанциям. Также в энергоемкий сектор входит черная металлургия, нефтехимия, строительство и т.д.

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения

Производственная база электроэнергетики представлена комплексом энергетических объектов: электростанций, подстанций, котельных, электрических и тепловых сетей, обеспечивающих совместно с другими предприятиями, а также строительными и монтажными организациями, НИИ, проектными институтами - функционирование и развитие электроэнергетики.

Технологическую основу функционирования электроэнергетики составляют электрические станции всех типов, единая национальная (общероссийская) электрическая сеть, территориальные распределительные сети и единая система диспетчерского управления.

Электроэнергетика

Эле́ктроэнерге́тика - отрасль энергетики , включающая в себя производство, передачу и сбыт электроэнергии . Электроэнергетика является наиболее важной отраслью энергетики, что объясняется такими преимуществами электроэнергии перед энергией других видов, как относительная лёгкость передачи на большие расстояния, распределения между потребителями, а также преобразования в другие виды энергии (механическую, тепловую, химическую, световую и др.). Отличительной чертой электрической энергии является практическая одновременность её генерирования и потребления, так как электрический ток распространяется по сетям со скоростью, близкой к скорости света .

Федеральный закон "Об электроэнергетике" даёт следующее определение электроэнергетики:

Электроэнергетика - отрасль экономики Российской Федерации, включающая в себя комплекс экономических отношений, возникающих в процессе производства (в том числе производства в режиме комбинированной выработки электрической и тепловой энергии), передачи электрической энергии, оперативно-диспетчерского управления в электроэнергетике, сбыта и потребления электрической энергии с использованием производственных и иных имущественных объектов (в том числе входящих в Единую энергетическую систему России), принадлежащих на праве собственности или на ином предусмотренном федеральными законами основании субъектам электроэнергетики или иным лицам. Электроэнергетика является основой функционирования экономики и жизнеобеспечения.

Определение электроэнергетики содержится также в ГОСТ 19431-84:

Электроэнергетика - раздел энергетики, обеспечивающий электрификацию страны на основе рационального расширения производства и использования электрической энергии.

История

История российской электроэнергетики

Динамика производства электроэнергии в России в 1992-2008 годах, в млрд кВт∙ч

История российской, да и пожалуй, мировой электроэнергетики, берет начало в 1891 году , когда выдающийся ученый Михаил Осипович Доливо-Добровольский осуществил практическую передачу электрической мощности около 220 кВт на расстояние 175 км. Результирующий КПД линии электропередачи, равный 77,4 %, оказался сенсационно высоким для такой сложной многоэлементной конструкции. Такого высокого КПД удалось достичь благодаря использованию трехфазного напряжения , изобретенного самим учёным.

В дореволюционной России, мощность всех электростанций составляла лишь 1,1 млн кВт, а годовая выработка электроэнергии равнялась 1,9 млрд кВт*ч. После революции, по предложению В. И. Ленина был развернут знаменитый план электрификации России ГОЭЛРО . Он предусматривал возведение 30 электростанций суммарной мощностью 1,5 млн кВт, что и было реализовано к 1931 году, а к 1935 году он был перевыполнен в 3 раза.

История белорусской электроэнергетики

Первые сведения об использовании электрической энергии в Беларуси относятся к концу XIX века. Однако и в начале прошлого столетия энергетическая база Беларуси находилась на очень низком уровне развития, что определяло отсталость товарного производства и социальной сферы: на одного жителя приходилось почти в пять раз меньше промышленной продукции, чем в среднем по Российской империи. Основными источниками освещения в городах и деревнях были керосиновые лампы, свечи, лучины.

Первая электростанция в Минске появилась в 1894 году. Она обладала мощностью 300 л.с. К 1913 году на станции были установлены три дизеля разных фирм и ее мощность достигла 1400 л.с.

В ноябре 1897 года дала первый ток электростанция постоянного тока в городе Витебске.

В 1913 году на территории Беларуси была только одна передовая по техническому оборудованию паротурбинная электростанция, которая принадлежала Добрушской бумажной фабрике.

Развитие энергетического комплекса Республики Беларусь начиналась с реализации плана ГОЭЛРО , ставшего первым после революции перспективным планом развития народного хозяйства советского государства. Решение грандиозной задачи электрификации всей страны дало возможность активизировать работы по восстановлению, расширению и строительству новых электростанций в нашей республике. Если в 1913 году мощность всех электростанций на территории Беларуси составляла всего 5,3 МВт, а годовое производство электроэнергии – 4,2 млн кВт ч, то к концу 30-х годов установленная мощность Белорусской энергосистемы уже достигла 129 МВт при годовой выработке электроэнергии 508 млн кВт ч. .

Начало стремительному становлению отрасли положил ввод в эксплуатацию первой очереди Белорусской ГРЭС мощностью 10 МВт – крупнейшей станции в довоенный период. БелГРЭС дала мощный толчок развитию электрических сетей 35 и 110 кВ. В республике сложился технологически управляемый комплекс: электростанция – электрические сети – потребители электроэнергии. Белорусская энергетическая система была создана де-факто, а 15 мая 1931 года принято решение об организации Районного управления государственных электрических станций и сетей Белорусской ССР – «Белэнерго».

На протяжении многих лет Белорусская ГРЭС оставалась ведущей электростанцией республики. Вместе с тем в 1930-е годы развитие энергетической отрасли идет семимильными шагами – появляются новые ТЭЦ, значительно увеличивается протяженность высоковольтных линий, создается потенциал профессиональных кадров. Однако этот яркий рывок вперед был перечеркнут Великой Отечественной. Война привела к практически полному уничтожению электроэнергетической базы республики. После освобождения Беларуси мощность ее электростанций составляла всего 3,4 МВт.

Энергетикам понадобились без преувеличения героические усилия для того, чтобы восстановить и превысить довоенный уровень установленной мощности электростанций и производства электроэнергии.

В последующие десятилетия отрасль продолжала развиваться, ее структура совершенствовалась, создавались новые энергетические предприятия. В конце 1964 года впервые в Беларуси заработала линия электропередачи 330 кВ – «Минск–Вильнюс», которая интегрировала нашу энергосистему в Объединенную энергосистему Северо-Запада, связанную с Единой энергосистемой Европейской части СССР.

Мощность электростанций за 1960–1970 годы выросла с 756 до 3464 МВт, а производство электроэнергии увеличилось с 2,6 до 14,8 млрд кВт∙ч.

Дальнейшее развитие энергетики страны привело к тому, что в 1975 году мощность электростанций достигла 5487 МВт, производство электроэнергии возросло почти в два раза по сравнению с 1970 годом. В последующий период развитие электроэнергетики замедлилось: по сравнению с 1975 годом мощность электростанций в 1991 году увеличилась немногим больше чем на 11 %, а производство электроэнергии – на 7 %.

В 1960–1990 годы общая протяженность электросетей выросла в 7,3 раза. Длина системообразующих ВЛ 220–750 кВ за 30 лет увеличилась в 16 раз и достигла 5875 км.

На 1 января 2010 года мощность электростанций республики составила 8 386,2 МВт, в том числе по ГПО «Белэнерго» – 7 983,8 МВт. Этой мощности достаточно для полного обеспечения потребности страны в электрической энергии. Вместе с тем ежегодно импортируется от 2,4 до 4,5 млрд. кВт ч из России, Украины, Литвы и Латвии в целях загрузки наиболее эффективных мощностей и с учетом проведения ремонта электростанций. Такие поставки способствуют устойчивости параллельной работы энергосистемы Беларуси с другими энергосистемами и надежного энергоснабжения потребителей. .

Мировое производство электроэнергии

Динамика мирового производства электроэнергии (Год - млрд Квт*час):

  • 1890 - 9
  • 1900 - 15
  • 1914 - 37,5
  • 1950 - 950
  • 1960 - 2300
  • 1970 - 5000
  • 1980 - 8250
  • 1990 - 11800
  • 2000 - 14500
  • 2005 - 18138,3
  • 2007 - 19894,8

Основные технологические процессы в электроэнергетике

Генерация электрической энергии

Генерация электроэнергии - это процесс преобразования различных видов энергии в электрическую на индустриальных объектах, называемых электрическими станциями. В настоящее время существуют следующие виды генерации:

  • Тепловая электроэнергетика . В данном случае в электрическую энергию преобразуется тепловая энергия сгорания органических топлив. К тепловой электроэнергетике относятся тепловые электростанции (ТЭС), которые бывают двух основных видов:
    • Конденсационные (КЭС , также используется старая аббревиатура ГРЭС);
    • Теплофикационные (теплоэлектроцентрали, ТЭЦ). Теплофикацией называется комбинированная выработка электрической и тепловой энергии на одной и той же станции;

КЭС и ТЭЦ имеют схожие технологические процессы. В обоих случаях имеется котёл , в котором сжигается топливо и за счёт выделяемого тепла нагревается пар под давлением. Далее нагретый пар подаётся в паровую турбину , где его тепловая энергия преобразуется в энергию вращения. Вал турбины вращает ротор электрогенератора - таким образом энергия вращения преобразуется в электрическую энергию, которая подаётся в сеть. Принципиальным отличием ТЭЦ от КЭС является то, что часть нагретого в котле пара уходит на нужды теплоснабжения;

  • Ядерная энергетика . К ней относятся атомные электростанции (АЭС). На практике ядерную энергетику часто считают подвидом тепловой электроэнергетики, так как, в целом, принцип выработки электроэнергии на АЭС тот же, что и на ТЭС. Только в данном случае тепловая энергия выделяется не при сжигании топлива, а при делении атомных ядер в ядерном реакторе . Дальше схема производства электроэнергии ничем принципиально не отличается от ТЭС: пар нагревается в реакторе, поступает в паровую турбину и т. д. Из-за некоторых конструктивных особенностей АЭС нерентабельно использовать в комбинированной выработке, хотя отдельные эксперименты в этом направлении проводились;
  • Гидроэнергетика . К ней относятся гидроэлектростанции (ГЭС). В гидроэнергетике в электрическую энергию преобразуется кинетическая энергия течения воды. Для этого при помощи плотин на реках искусственно создаётся перепад уровней водяной поверхности (т. н. верхний и нижний бьеф). Вода под действием силы тяжести переливается из верхнего бьефа в нижний по специальным протокам, в которых расположены водяные турбины, лопасти которых раскручиваются водяным потоком. Турбина же вращает ротор электрогенератора. Особой разновидностью ГЭС являются гидроаккумулирующие станции (ГАЭС). Их нельзя считать генерирующими мощностями в чистом виде, так как они потребляют практически столько же электроэнергии, сколько вырабатывают, однако такие станции очень эффективно справляются с разгрузкой сети в пиковые часы.

В последнее время исследования показали, что мощность морских течений на много порядков превышает мощность всех рек мира. В связи с этим ведётся создание опытных морских гидроэлектростанций.

  • Альтернативная энергетика . К ней относятся способы генерации электроэнергии, имеющие ряд достоинств по сравнению с «традиционными», но по разным причинам не получившие достаточного распространения. Основными видами альтернативной энергетики являются:
    • Ветроэнергетика - использование кинетической энергии ветра для получения электроэнергии;
    • Гелиоэнергетика - получение электрической энергии из энергии солнечных лучей ; Общими недостатками ветро- и гелиоэнергетики являются относительная маломощность генераторов при их дороговизне. Также в обоих случаях обязательно нужны аккумулирующие мощности на ночное (для гелиоэнергетики) и безветренное (для ветроэнергетики) время;
    • Геотермальная энергетика - использование естественного тепла Земли для выработки электрической энергии. По сути геотермальные станции представляют собой обычные ТЭС, на которых источником тепла для нагрева пара является не котёл или ядерный реактор, а подземные источники естественного тепла. Недостатком таких станций является географическая ограниченность их применения: геотермальные станции рентабельно строить только в регионах тектонической активности, то есть, там, где естественные источники тепла наиболее доступны;
    • Водородная энергетика - использование водорода в качестве энергетического топлива имеет большие перспективы: водород имеет очень высокий КПД сгорания, его ресурс практически не ограничен, сжигание водорода абсолютно экологически чисто (продуктом сгорания в атмосфере кислорода является дистиллированная вода). Однако в полной мере удовлетворить потребности человечества водородная энергетика на данный момент не в состоянии из-за дороговизны производства чистого водорода и технических проблем его транспортировки в больших количествах. На самом деле, водород - всего лишь носитель энергии, и никак не снимает проблемы добычи этой энергии.
    • Приливная энергетика использует энергию морских приливов . Распространению этого вида электроэнергетики мешает необходимость совпадения слишком многих факторов при проектировании электростанции: необходимо не просто морское побережье, но такое побережье, на котором приливы были бы достаточно сильны и постоянны. Например, побережье Чёрного моря не годится для строительства приливных электростанций, так как перепады уровня воды на Чёрном море в прилив и отлив минимальны.
    • Волновая энергетика при внимательном рассмотрении может оказаться наиболее перспективной. Волны представляют собой сконцентрированную энергию того же солнечного излучения и ветра. Мощность волнения в разных местах может превышать 100 кВт на погонный метр волнового фронта. Волнение есть практически всегда, даже в штиль ("мёртвая зыбь "). На Чёрном море средняя мощность волнения примерно 15 кВт/м. Северные моря России - до 100 кВт/м. Использование волн может обеспечить энергией морские и прибрежные поселения. Волны могут приводить в движение суда. Мощность средней качки судна в несколько раз превышает мощность его силовой установки. Но пока волновые электростанции не вышли за рамки единичных опытных образцов.

Передача и распределение электрической энергии

Передача электрической энергии от электрических станций до потребителей осуществляется по электрическим сетям . Электросетевое хозяйство - естественно-монопольный сектор электроэнергетики: потребитель может выбирать, у кого покупать электроэнергию (то есть энергосбытовую компанию), энергосбытовая компания может выбирать среди оптовых поставщиков (производителей электроэнергии), однако сеть, по которой поставляется электроэнергия, как правило, одна, и потребитель технически не может выбирать электросетевую компанию. С технической точки зрения, электрическая сеть представляет собой совокупность линий электропередачи (ЛЭП) и трансформаторов , находящихся на подстанциях .

  • Линии электропередачи представляют собой металлический проводник, по которому проходит электрический ток. В настоящее время практически повсеместно используется переменный ток. Электроснабжение в подавляющем большинстве случаев - трёхфазное , поэтому линия электропередачи, как правило, состоит из трёх фаз, каждая из которых может включать в себя несколько проводов. Конструктивно линии электропередачи делятся на воздушные и кабельные .
    • Воздушные линии (ВЛ) подвешены над поверхностью земли на безопасной высоте на специальных сооружениях, называемых опорами. Как правило, провод на воздушной линии не имеет поверхностной изоляции; изоляция имеется в местах крепления к опорам. На воздушных линиях имеются системы грозозащиты . Основным достоинством воздушных линий электропередачи является их относительная дешевизна по сравнению с кабельными. Также гораздо лучше ремонтопригодность (особенно в сравнении с бесколлекторными кабельными линиями): не требуется проводить земляные работы для замены провода, ничем не затруднён визуальный контроль состояния линии. Однако, у воздушных ЛЭП имеется ряд недостатков:
      • широкая полоса отчуждения: в окрестности ЛЭП запрещено ставить какие-либо сооружения и сажать деревья; при прохождении линии через лес, деревья по всей ширине полосы отчуждения вырубаются;
      • незащищённость от внешнего воздействия, например, падения деревьев на линию и воровства проводов; несмотря на устройства грозозащиты, воздушные линии также страдают от ударов молнии. По причине уязвимости, на одной воздушной линии часто оборудуют две цепи: основную и резервную;
      • эстетическая непривлекательность; это одна из причин практически повсеместного перехода на кабельный способ электропередачи в городской черте.
    • Кабельные линии (КЛ) проводятся под землёй. Электрические кабели имеют различную конструкцию, однако можно выявить общие элементы. Сердцевиной кабеля являются три токопроводящие жилы (по числу фаз). Кабели имеют как внешнюю, так и междужильную изоляцию. Обычно в качестве изолятора выступает трансформаторное масло в жидком виде, или промасленная бумага. Токопроводящая сердцевина кабеля, как правило, защищается стальной бронёй. С внешней стороны кабель покрывается битумом. Бывают коллекторные и бесколлекторные кабельные линии. В первом случае кабель прокладывается в подземных бетонных каналах - коллекторах . Через определённые промежутки на линии оборудуются выходы на поверхность в виде люков - для удобства проникновения ремонтных бригад в коллектор. Бесколлекторные кабельные линии прокладываются непосредственно в грунте. Бесколлекторные линии существенно дешевле коллекторных при строительстве, однако их эксплуатация более затратна в связи с недоступностью кабеля. Главным достоинством кабельных линий электропередачи (по сравнению с воздушными) является отсутствие широкой полосы отчуждения. При условии достаточно глубокого заложения, различные сооружения (в том числе жилые) могут строиться непосредственно над коллекторной линией. В случае бесколлекторного заложения строительство возможно в непосредственной близости от линии. Кабельные линии не портят своим видом городской пейзаж, они гораздо лучше воздушных защищены от внешнего воздействия. К недостаткам кабельных линий электропередачи можно отнести высокую стоимость строительства и последующей эксплуатации: даже в случае бесколлекторной укладки сметная стоимость погонного метра кабельной линии в разы выше, чем стоимость воздушной линии того же класса напряжения . Кабельные линии менее доступны для визуального наблюдения их состояния (а в случае бесколлекторной укладки - вообще недоступны), что также является существенным эксплуатационным недостатком.

Потребление электрической энергии

По данным Управления по энергетической информации США (EIA - U.S. Energy Information Administration) в 2008 году мировое потребление электроэнергии составило около 17,4 трлн кВт ч .

Виды деятельности в электроэнергетике

Оперативно-диспетчерское управление

Система оперативно-диспетчерского управления в электроэнергетике включает в себя комплекс мер по централизованному управлению технологическими режимами работы объектов электроэнергетики и энергопринимающих установок потребителей в пределах Единой энергетической системы России и технологически изолированных территориальных электроэнергетических систем, осуществляемому субъектами оперативно-диспетчерского управления, уполномоченными на осуществление указанных мер в порядке, установленном Федеральным законом «Об электроэнергетике» . Оперативное управление в электроэнергетике называют диспетчерским, потому что оно осуществляется специализированными диспетчерскими службами. Диспетчерское управление производится централизованно и непрерывно в течение суток под руководством оперативных руководителей энергосистемы - диспетчеров .

Энергосбыт

См. также

Примечания

Ссылки

Топливная
промышленность :
топливо
Органическое
Газообразное Природный газ Генераторный газ Коксовый газ Доменный газ Продукты перегонки нефти Газ подземной газификации Синтез-газ
Жидкое Нефть Бензин Керосин Соляровое масло Мазут