Вредные свойства фенола. Химические свойства фенолов

Их можно обнаружить в природе, но больше всего известны человеку те, которые получены искусственным путем. Они широко сейчас используются в химической промышленности, строительстве, производстве пластмасс и даже в медицине. Из-за высоких токсичных свойств, устойчивости его соединений и способности проникать в организм человека сквозь кожу и органы дыхания часто бывает отравление фенолом. Поэтому это вещество отнесли к классу высокоопасных ядовитых соединений и жестко регламентировали его применение.

Что такое фенолы

Встречающиеся в природе и производимые в искусственных условиях. Природные фенолы могут быть полезными - это антиоксидант, полифенолы, которые делают некоторые растения целительными для человека. А синтетические фенолы - это ядовитые вещества. При попадании на кожу они вызывают ожог, при проникновении в организм человека - сильное отравление. Эти сложные соединения, относящиеся к летучим ароматическим углеводородам, переходят в газообразное состояние уже при температуре чуть более 40 градусов. Но в обычных условиях это прозрачное кристаллическое вещество со специфическим запахом.

Определение фенола изучается в школе в курсе органической химии. При этом говорится о его составе, строении молекулы и вредных свойствах. Про натуральные вещества этой группы, играющие большую роль в природе, многие ничего не знают. Как же можно охарактеризовать фенол? Состав этого химического соединения очень прост: молекула бензойной группы, водород и кислород.

Виды фенолов

Эти вещества присутствуют во многих растениях. Они обеспечивают окраску их стеблей, аромат цветов или отпугивают вредителей. Есть также синтетические соединения, которые ядовиты. К этим веществам можно отнести:

  1. Природные фенольные соединения - это капсаицин, эвгенол, флавоноиды, лигнины и другие.
  2. Самый известный и ядовитый фенол - кислота карболовая.
  3. Соединения бутилфенол, хлорфенол.
  4. Креозот, лизол и другие.

Но в основном обычным людям известны только два названия: и собственно фенол.

Свойства этих соединений

Эти химические вещества обладают не только токсичностью. Они используются человеком не просто так. Чтобы определить, какими качествами обладает фенол, состав очень важен. Соединение углерода, водорода и кислорода наделяет его особыми свойствами. Именно поэтому так широко используется человеком фенол. Свойства этого соединения такие:


Роль фенолов в природе

Эти вещества находятся во многих растениях. Они участвуют в создании их окраски и аромата. Капсаицин придает остроту горькому перцу. Антоцианы и флавоноиды окрашивают кору деревьев, а кетол или эвгенол обеспечивают наличие аромата у цветов. В некоторых растениях содержатся полифенолы, вещества, образованные соединением нескольких молекул фенола. Они полезны для здоровья человека. К полифенолам относятся лигнины, флавоноиды и другие. Эти вещества есть в оливковом масле, фруктах, орехах, чае, шоколаде и других продуктах. Считается, что некоторые из них обладают омолаживающим эффектом и защищают организм от рака. Но есть и ядовитые соединения: танины, урушиол, карболовая кислота.

Вред фенолов для человека

Это вещество и все его производные легко проникают в организм через кожу и легкие. В крови фенол образует соединения с другими веществами и становится еще более токсичным. Чем выше его концентрация в организме, тем больший вред он может нанести. Фенол нарушает деятельность нервной и сердечно-сосудистой системы, поражает печень и почки. Он разрушает эритроциты, вызывает аллергические реакции и появление язв.

Чаще всего отравление фенолом происходит через питьевую воду, а также через воздух в помещениях, в которых использовались его производные при строительстве, производстве краски или мебели.

При вдыхании его соединений происходит раздражение носоглотки и даже отек легких. Если фенол попал на кожу, получается сильный химический ожог, после которого развиваются плохо заживающие язвы. А если поражено более четверти кожных покровов человека, это приводит к его смерти. При случайном заглатывании небольших доз фенола, например, с зараженной водой, развивается язва желудка, нарушение координации движений, бесплодие, сердечная недостаточность, кровотечения и раковые опухоли. Большие дозы сразу приводят к смерти.

Где применяются фенолы

После открытия этого вещества была обнаружена его способность менять окраску на воздухе. Это качество стали использовать для производства красителей. Но потом были открыты другие его свойства. И вещество фенол стало широко использоваться в деятельности человека:


Применение в медицине

Когда были обнаружены бактерицидные свойства фенола, его широко стали использовать в медицине. В основном для дезинфекции помещений, инструментов и даже рук персонала. Кроме того, фенолы - это основные компоненты некоторых популярных лекарств: аспирина, пургена, препаратов для лечения туберкулеза, грибковых заболеваний и различных антисептиков, например, ксероформа.

Сейчас фенол часто применяется в косметологии для глубокого пилинга кожи. При этом используется его свойство сжигать верхний слой эпидермиса.

Использование фенола для дезинфекции

Есть и специальный препарат в виде мази и раствора для наружного применения. Он используется для дезинфекции вещей и поверхностей в помещении, инструментов и белья. Под наблюдением врача фенол применяют для лечения кондилом, пиодермий, импетиго, фолликулитов, гнойных ран и других кожных заболеваний. Раствор в сочетании с применяют для дезинфекции помещений, замачивания белья. Если смешивать его с керосином или скипидаром, то он приобретает дезинсекционные свойства.

Нельзя обрабатывать фенолом обширные участки кожи, а также помещения, предназначенные для приготовления и хранения пищи.

Как можно отравиться фенолом

Смертельная дозировка этого вещества для взрослого человека может составлять от 1 г, а для ребенка - 0,05 г. Отравление фенолом может произойти по таким причинам:

  • при несоблюдении техники безопасности в работе с ядовитыми веществами;
  • при несчастном случае;
  • при несоблюдении дозировки лекарственных средств;
  • при использовании пластмассовых изделий с фенолом, например, игрушек или посуды;
  • при неправильном хранении бытовой химии.

При остром видны сразу и можно оказать человеку помощь. Но опасность фенола в том, что при поступлении маленьких доз этого можно не заметить. Поэтому, если человек живет в помещении, где использовались отделочные материалы, лакокрасочные изделия или мебель, выделяющие фенол, происходит хроническое отравление.

Симптомы отравления

Очень важно вовремя распознать проблему. Это поможет вовремя начать лечение и предотвратить летальный исход. Основные симптомы такие же, как при любом другом отравлении: тошнота, рвота, сонливость, головокружение. Но есть и характерные признаки, по которым можно узнать, что человек отравился именно фенолом:

  • характерный запах изо рта;
  • обморок;
  • резкое снижение температуры тела;
  • расширенные зрачки;
  • бледность;
  • одышка;
  • холодный пот;
  • снижение частоты пульса и артериального давления;
  • боли в животе;
  • кровянистая диарея;
  • белые пятна на губах.

Нужно знать также признаки хронического отравления. При поступлении маленьких доз в организм нет сильно выраженных признаков этого. Но фенол подрывает состояние здоровья. Симптомы хронического отравления такие:

  • частые мигрени, головные боли;
  • тошнота;
  • дерматиты и аллергические реакции;
  • бессонница;
  • расстройства кишечника;
  • сильная утомляемость;
  • раздражительность.

Первая помощь и лечение отравления

Пострадавшему необходимо оказать первую помощь и как можно скорее доставить его к врачу. Меры, которые нужно принять сразу после контакта с фенолом, зависят от места его проникновения в организм:

  1. При попадании вещества на кожу, промыть большим количеством воды, нельзя обрабатывать ожоги мазью или жиром.
  2. Если фенол попал на слизистую рта - прополоскать, ничего не глотать.
  3. При попадании в желудок выпить сорбент, например, уголь, «Полисорб», не рекомендуется промывать желудок во избежание ожога слизистой.

В медицинском учреждении лечение отравления сложное и длительное. Проводится вентиляция легких, дезинтосикационная терапия, вводится антидот - глюконат кальция, применяются сорбенты, антибиотики, сердечные препараты,

Правила безопасности при использовании фенолов

Санитарно-эпидемиологические нормы во всех странах установили предельно допустимый уровень концентрации фенола в воздухе помещений. Безопасной дозой считается 0,6 мг на 1 кг веса человека. Но эти нормативы не учитывают, что при регулярном поступлении даже такой концентрации фенола в организм, он постепенно накапливается и способен принести серьезный вред здоровью. Это вещество может выделяться в воздух из пластмассовых изделий, красок, мебели, строительных и отелочных материалов, косметики. Потому необходимо внимательно следить за составом покупаемой продукции и, если ощущается неприятный сладковатый запах от какой-то вещи, он нее лучше избавиться. При использовании фенола для дезинфекции необходимо строго соблюдать дозировку и правила хранения растворов.

Фенолы — общее название ароматических спиртов. По своим свойствам вещества являются слабыми кислотами. Важное практическое значение имеют многие гомологи гидроксибензола С 6 Н 5 0Н (формула фенола) — простейшего представителя класса. Остановимся на этом подробнее.

Фенолы. Общая формула и классификация

Общая формула органических веществ, относящихся к ароматическим спиртам, — R-OH. Молекулы собственно фенолов и крезолов образованы радикалом - фенилом С6Н5, с которым непосредственно соединяется одна или несколько гидроксильных групп OH (оксигрупп). По их числу в молекуле фенолы классифицируются на одно-, двух- и многоатомные. Одноатомными соединениями этого типа являются фенол и крезол. Наиболее распространенные среди многоатомных гидроксибензолов — нафтолы, которые содержат в своем составе 2 конденсированных ядра.

Фенол — представитель ароматических спиртов

Текстильщикам фенол был известен уже в XVIII веке: ткачи использовали его в качестве красителя. При перегонке каменноугольной смолы в 1834 году химик из Германии Ф. Рунге выделил кристаллы этого вещества с характерным сладковатым запахом. Латинское название угля - carbo, поэтому соединение называли (карболкой). Немецкому исследователю не удалось определить состав вещества. Молекулярная формула фенола была установлена в 1842 годах О. Лораном, считавшим карболку производным бензола. Для новой кислоты употребляли наименование «фениловая». Шарль Жерар определил, что вещество является спиртом, и назвал его фенолом. Первоначальные области применения соединения — медицина, дубление кож, выпуск синтетических красителей. Характеристики рассматриваемого вещества:

  • Рациональная химическая формула — C 6 H 5 OH.
  • соединения — 94,11 а. е. м.
  • Брутто-формула, отражающая состав, — C 6 H 6 O.

Электронное и пространственное строение молекулы фенола

Циклическую структурную формулу бензола предложил немецкий химик-органик Ф. Кекуле в 1865 году, а незадолго до него — И. Лошмидт. Ученые представляли молекулу органического вещества в виде с чередующимися простыми и двойными связями. По современным представлениям, ароматическое ядро — это особый вид кольцевой структуры, получивший название «сопряженная связь».

Шесть атомов углерода С испытывают процесс sp 2 -гибридизации электронных орбиталей. Не участвующие в образовании С—С-связей р-электронные облака перекрываются над и под плоскостью ядра молекулы. Возникают две части общего электронного облака, которое охватывает все кольцо. Структурная формула фенола может выглядеть по-разному, учитывая исторический подход к описанию строения бензола. Чтобы подчеркнуть непредельный характер ароматических углеводородов, условно считают двойными три из шести связей, которые перемежаются с тремя простыми.

Поляризация связи в оксигруппе

В простейшем - бензоле С 6 Н 6 - электронное облако является симметричным. Формула фенола отличается на одну оксигруппу. Присутствие гидроксила нарушает симметрию, что находит отражение в свойствах вещества. Связь между кислородом и водородом в оксигруппе — полярная ковалентная. Смещение общей пары электронов к атому кислорода приводит к возникновению на нем отрицательного заряда (частичного). Водород лишается электрона и приобретает частичный заряд «+». Кроме того, кислород в О—Н-группе является обладателем двух неподеленных электронных пар. Одна из них притягивается электронным облаком ароматического ядра. По этой причине связь становится более поляризованной, легче замещается металлами. Модели дают представления о несимметричном характере молекулы фенола.

Особенности взаимовлияния атомов в феноле

Единое электронное облако ароматического ядра в молекуле фенола взаимодействует с гидроксильной группой. Происходит явление, получившее название сопряжения, в результате которого собственная пара электронов атома кислорода оксигруппы притягивается к системе бензольного цикла. Снижение отрицательного заряда компенсируется благодаря еще большей поляризации связи в группе О—Н.

В ароматическом ядре также изменяется система электронного распределения. Она понижается на углероде, который связан с кислородом, и повышается у ближайших к нему атомов, находящихся в орто-положениях (2 и 6). Сопряжение вызывает накопление на них заряда «-». Дальнейшее» смещение плотности — движение ее от атомов в мета-положениях (3 и 5) к углероду в пара-положении (4). Формула фенола для удобства изучения сопряжения и взаимовлияния обычно содержит нумерацию атомов бензольного кольца.

Объяснение химических свойств фенола на основе его электронного строения

Процессы сопряжения ароматического ядра и гидроксила сказываются на свойствах обеих частиц и всего вещества. Например, высокая электронная плотность у атомов в орто- и пара-положениях (2, 4, 6) делает С—Н-связи ароматического цикла фенола более реакционноспособными. Снижается отрицательный заряд атомов углерода в мета-положениях (3 и 5). Атаке электрофильных частиц в химических реакциях подвергается углерод, находящийся в орто- и пара-положениях. В реакции бромирования бензола изменения наступают при сильном нагревании и присутствии катализатора. Образуется моногалогенопроизводное — бромбензол. Формула фенола позволяет веществу реагировать с бромом практически мгновенно без нагревания смеси.

Ароматическое ядро влияет на полярность связи в оксигруппе, увеличивая ее. Атом водорода становится подвижнее, по сравнению с предельными спиртами. Фенол реагирует со щелочами, образуя соли - феноляты. Этанол не взаимодействует со щелочами, вернее, продукты реакции — этаноляты — разлагаются. В химическом плане фенолы — более сильные кислоты, чем спирты.

Представители класса ароматических спиртов

Брутто-формула гомолога фенола — крезола (метилфенола, гидрокситолуола) — C 7 H 8 O. Вещество в природном сырье часто сопутствует фенолу, тоже обладает антисептическими свойствами. Другие гомологи фенола:

  • Пирокатехин (1,2-гидроксибензол). Химическая формула — С 6 Н 4 (ОН) 2 .
  • Резорцин (1,3-гидроксибензол) — С 6 Н 4 (ОН) 2 .
  • Пирогаллол (1,2,3- тригидроксибензол) — С 6 Н 3 (ОН) 3 .
  • Нафтол. Брутто-формула вещества — C 10 H 7 OH. Применяется в производстве красителей, медикаментов, душистых соединений.
  • Тимол (2-изопропил-5-метилфенол). Химическая формула — C 6 H 3 CH 3 (OH)(C 3 H 7). Применяется в химии органического синтеза, медицине.
  • Ванилин, кроме фенольного радикала, содержит простую эфирную группу и остаток альдегида. Брутто-формула соединения — C 8 H 8 O 3 . Ванилин широко используется как искусственная отдушка.

Формула реактива для распознавания фенолов

Качественное определение фенола можно проводить с помощью брома. В результате выпадает белый осадок трибромфенола. Пирокатехин (1,2-гидроксибензол) окрашивается в зеленый цвет в присутствии растворенного хлорида трехвалентного железа. С этим же реагентом вступает в химическую реакцию фенол, и образуется трифенолят, обладающий фиолетовым цветом. Качественная реакция на резорцин — появление темно-фиолетового окрашивания в присутствии хлорида трехвалентного железа. Постепенно цвет раствора становится черным. Формула реактива, который служит для распознавания фенола и некоторых его гомологов, — FeCl 3 (хлорид железа (III)).

Гидроксибензол, нафтол, тимол — это все фенолы. Общая формула и состав веществ позволяет определить принадлежность этих соединение к ароматическому ряду. Все органические вещества, содержащие в своей формуле фенильный радикал С 6 Н 5 , с которым непосредственно связаны оксигруппы, проявляют особые свойства. От спиртов они отличаются лучше выраженным кислотным характером. По сравнению с веществами бензола, фенолы — более активные химические соединения.

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле (рис.1)

Рис. 1. ОДНО-, ДВУХ- И ТРЕХАТОМНЫЕ ФЕНОЛЫ

В соответствии с количеством конденсированных ароматических циклов в молекуле различают (рис. 2) сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы (рис. 2).

Рис. 2. МОНО- И ПОЛИЯДЕРНЫЕ ФЕНОЛЫ

Номенклатура спиртов.

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы , входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей (рис. 3).

Рис. 3. НОМЕНКЛАТУРА ФЕНОЛОВ . Замещающие группы и соответствующие цифровые индексы для наглядности выделены различными цветами.

Химические свойства фенолов.

Бензольное ядро и ОН-группа, объединенные в молекуле фенола, влияют друг на друга, существенно повышая реакционную способность друг друга. Фенильная группа оттягивает на себя неподеленную электронную пару от атома кислорода в ОН-группе (рис. 4). В результате на атоме Н этой группы увеличивается частичный положительный заряд (обозначен значком d+), полярность связи О–Н возрастает, что проявляется в увеличении кислотных свойств этой группы. Таким образом, в сравнении со спиртами, фенолы представляют собой более сильные кислоты. Частичный отрицательный заряд (обозначен через d–), переходя на фенильную группу, сосредотачивается в положениях орто- и пара- (по отношению к ОН-группе). Эти реакционные точки могут атаковаться реагентами, тяготеющими к электроотрицательным центрам, так называемыми электрофильными («любящими электроны») реагентами.

Рис. 4. РАСПРЕДЕЛЕНИЕ ЭЛЕКТРОННОЙ ПЛОТНОСТИ В ФЕНОЛЕ

В итоге для фенолов возможны два типа превращений: замещение атома водорода в ОН-группе и замещение Н-атомобензольном ядре. Пара электронов атома О, оттянутая к бензольному кольцу, увеличивает прочность связи С–О, поэтому реакции, протекающие с разрывом этой связи, характерные для спиртов, для фенолов не типичны.

1. Реакции замещения атома водорода в ОН-группе. При действии на фенолы щелочей образуются феноляты (рис. 5А), каталитическое взаимодействие со спиртами приводит к простым эфирам (рис. 5Б), а в результате реакции с ангидридами или хлорангидридами карбоновых кислот образуются сложные эфиры (рис. 5В). При взаимодействии с аммиаком (повышенная температура и давление) происходит замена ОН-группы на NH 2 , образуется анилин, (рис. 5Г), восстанавливающие реагенты превращают фенол в бензол (рис. 5Д)

2. Реакции замещения атомов водорода в бензольном кольце.

При галогенировании, нитровании, сульфировании и алкилировании фенола атакуются центры с повышенной электронной плотностью (рис.4), т.е. замещение проходят преимущественно в орто- и пара- положениях (рис.6).

При более глубоком протекании реакции происходит замещение двух и трех атомов водорода в бензольном кольце.

Особое значение имеют реакции конденсации фенолов с альдегидами и кетонами, по существу, это алкилирование, проходящее легко и в мягких условиях (при 40–50° С, водная среда в присутствии катализаторов), при этом атом углерода в виде метиленовой группы СН 2 или замещенной метиленовой группы (CНR либо CR 2) встраивается между двумя молекулами фенола. Часто такая конденсация приводит к образованию полимерных продуктов (рис. 7).

Двухатомный фенол (торговое название бисфенол А, рис.7), используют в качестве компонента при получении эпоксидных смол. Конденсация фенола с формальдегидом лежит в основе производства широко применяемых феноло-формальдегидных смол (фенопласты).

Способы получения фенолов.

Фенолы выделяют из каменноугольной смолы, а также из продуктов пиролиза бурых углей и древесины (деготь). Промышленный способ получения самого фенола С 6 Н 5 ОН основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной H 2 SO 4 (рис. 8А). Реакция проходит с высоким выходом и привлекательна тем, что позволяет получить сразу два технически ценных продукта – фенол и ацетон. Другой способ – каталитический гидролиз галогензамещенных бензолов (рис. 8Б).

Рис. 8. СПОСОБЫ ПОЛУЧЕНИЯ ФЕНОЛА

Применение фенолов.

Раствор фенола используют в качестве дезинфицирующего средства (карболовая кислота). Двухатомные фенолы – пирокатехин, резорцин (рис. 3), а также гидрохинон (пара- дигидроксибензол) применяют как антисептики (антибактериальные обеззараживающие вещества), вводят в состав дубителей для кожи и меха, как стабилизаторы смазочных масел и резины, а также для обработки фотоматериалов и как реагенты в аналитической химии.

В виде отдельных соединений фенолы используются ограниченно, зато их различные производные применяют широко. Фенолы служат исходными соединениями для получения разнообразных полимерных продуктов – феноло-альдегидных смол (рис. 7), полиамидов, полиэпоксидов. На основе фенолов получают многочисленные лекарственные препараты, например, аспирин, салол, фенолфталеин, кроме того, красители, парфюмерные продукты, пластификаторы для полимеров и средства защиты растений.

Михаил Левицкий

Фенолы – это производные аренов, у которых один или несколько атомов водорода ароматического кольца замещены на ОН-группу.

Классификация.

1. Одноатомные фенолы:

2. Многоатомные фенолы:

Физические свойства:

Фенол и его низшие гомологи – бесцветные низкоплавкие кристаллические вещества или жидкости с характерным запахом.

Фенол умеренно растворим в воде. Фенол способен образовывать водородные связи, что лежит в основе его антисептических свойств. Водные растворы фенола вызывают ожоги тканей. Разбавленный водный раствор фенола называется карболовой кислотой. Фенол – токсичен, токсичность гомологов фенола уменьшается, бактерицидная активность увеличивается по мере усложнения алкильного радикала.

Способы получения фенолов

1. Из каменноугольной смолы.

2. Кумольный метод

3. Сплавление солей ароматических сульфокислот с щелочью:

4. Разложение солей диазония:

5. Гидролиз галогенпроизводных

§11. Химические свойства фенолов .

1. Кислотные свойства: фенолы образуют соли:

Фенол – более слабая кислота, чем угольная Н 2 СО 3:

2. Реакции с участием ОН-группы.

а) алкилирование (образование простых эфиров)

б) ацилирование (образование сложных эфиров):

3. Реакции замещения ОН-группы:

Фенол с NH 3 и R – NH 2 не взаимодействует.

4. Реакции электрофильного замещения, характерные для аренов.

Замещение протекает быстрее, чем у бензола. ОН-группа направляет новый заместитель в орто- и пара-положения.

а) галогенирование (обесцвечивание бромной воды – качественная реакция на фенол):

б) нитрование

в) сульфирование:

5. Реакции конденсации

а) с формальдегидом

б) с фталевым ангидридом

6. Окисление

а) на воздухе белые кристаллы фенола розовеют;

б) фенол с раствором FeCl 3 дает красно-фиолетовое окрашивание;

крезол – голубое окрашивание;

в) окисление сильными окислителями

7. Восстановление

8. Карбоксилирование (реакция Кольбе – Шмитта):

Применение

1. Фенол применяется в производстве фенолформальдегидных смол, капролактама, пикриновой кислоты, красителей, инсектицидов, лекарственных средств.

2. Пирокатехин и его производные используются в производстве лекарственных средств (получен синтетический гормон – адреналин) и душистых веществ.

3. Резорцин применяют в синтезе красителей; в медицине в качестве дезинфицирующего средства.

Экспериментальная часть

Опыт 1 . Влияние радикала и количества гидроксильных групп на растворимость спиртов.

В три пробирки внесите 4-5 капель этилового, изоамилового спиртов и глицерина. В каждую пробирку добавьте по 5-6 капель воды, взболтайте. Что наблюдали?

Опыт 2. Обнаружение воды в этиловом спирте и его обезвоживание.

В сухую пробирку внесите 10 капель этилового спирта, добавьте немного обезвоженного сульфата меди, тщательно перемешайте, дайте отстояться. Если спирт содержит воду, осадок сульфата меди окрасится в голубой цвет вследствии образования медного купороса СuSO 4 · 5H 2 O. Сохраните обезвоженный спирт для дальнейшего опыта.

Опыт 3. Образование этилата натрия.

Поместите в сухую пробирку маленький кусочек натрия, добавьте 3 капли обезвоженного этилового спирта (из предыдущего опыта) и закройте отверстие пробирки пальцем. Тут же начинается выделение водорода.

По окончании реакции, не отрывая пальца от отверстия пробирки, поднесите ее к пламени горелки. При открытии пробирки водород воспламеняется с характерным звуком, образуя колечко голубоватого цвета. На дне пробирки остается беловатый осадок этилата натрия или его раствор.

При добавлении в пробирку 1 капли спиртового раствора фенолфталеина появляется красное окрашивание.

Напишите уравнения протекающих реакций.

Опыт 4. Окисление этилового спирта хромовой смесью.

Введите в пробирку 3-4 капли этилового спирта. Добавьте 1 каплю 2н раствора серной кислоты и 2 капли 0,5н раствора бихромата калия. Полученный оранжевый раствор нагрейте над пламенем горелки до начала изменения цвета. Обычно уже через несколько секунд цвет раствора становится синевато-зеленым. Одновременно ощущается характерный запах уксусного альдегида, напоминающий запах яблок. Метод можно применять для распознавания первичных и вторичных спиртов.

Напишите уравнения реакций.

Опыт 5. Получение этилацетата.

В сухую пробирку поместите немного порошка обезвоженного ацетата натрия (высота слоя около 2мм) и 3 капли этилового спирта. Добавьте 2 капли концентрированной серной кислоты и нагрейте осторожно над пламенем горелки. Через несколько секунд появляется характерный приятный освежающий запах уксусноэтилового эфира.

Уравнения реакции:

СН 3 С(О)ОNа + НОSО 3 Н NаНSО 4 + СН 3 С(О)ОН

С 2 Н 5 ОН + НОSО 3 Н Н 2 О + С 2 Н 5 ОSО 3 Н

СН 3 С(О)ОН + НОSО 3 Н Н 2 SО 4 + СН 3 С(О)О С 2 Н 5

Опыт 6. Реакция глицерина с гидроксидом меди (II) в щелочной среде.

Поместите в пробирку 3 капли 0,2н раствора СuSO 4 , 2 капли 2н раствора NаОН и перемешайте. Появляется студенистый осадок гидроксида меди (II):

При нагревании в щелочной среде до кипения полученный гидроксид

меди (II) разлагается. Это обнаруживается по выделению черного осадка оксида меди (II):

Повторите опыт, но перед кипячением гидроксида меди (II) добавьте в пробирку 1 каплю глицерина. Взболтайте. Нагрейте до кипения полученный раствор и убедитесь в том, что раствор глицерата меди при кипячении не разлагается. Здесь образуется хелатное соединение

Опыт 7. Образовавние акролеина из глицерина.

Поместите в пробирку 3-4 кристалла бисульфата калия и 1 каплю глицерина. Нагрейте на пламени горелки. Признаком начавшегося разложения глицерина служит побурение жидкости в пробирке и появление тяжелых паров образующегося акролеина, обладающего очень резким запахом.

Опыт 8. Растворимость фенола в воде.

Поместите в пробирку 1 каплю жидкого фенола, добавьте 1 каплю воды и

взболтайте. Получится мутная жидкость – эмульсия фенола. При стоянии

такая эмульсия расслаивается, причем внизу будет раствор воды в феноле,

или жидкий фенол, а вверху – раствор фенола в воде, или карболовая вода.

Прибавляйте по каплям воду, каждый раз встряхивая пробирку, пока не

получится прозрачный раствор фенола в воде. Сохраните полученную

фенольную воду для последующих опытов.

Опыт 9 .Цветные реакции на фенольную воду.

Поместите в пробирку 3 капли прозрачной фенольной воды и добавьте 1 каплю 0,1н раствора FeCl 3 – появляется фиолетовое окрашивание.

Более чувствительной реакцией на фенол является цветная индофеноловая

Поместите в пробирку 1 каплю прозрачной карболовой воды. Добавьте к ней 3 капли 2н раствора NН 4 ОН и затем 3 капли насыщенного раствора бромной воды. Через несколько секунд на белом фоне бумаги можно заметить синее окрашивание, постепенно увеличивающееся за счет образования красящего вещества – индофенола.

Опыт 10. Образование трибромфенола.

Поместите в пробирку 3 капли бромной воды и добавьте 1 каплю прозрачной карболовой воды. Фенолы со свободными орто- и пара-положениями обесцвечивают бромную воду и образуют при этом продукты замещения, которые обычно выпадают в осадок.

Опыт 11. Доказательство кислотного характера фенола.

К остатку фенольной воды добавьте еще 1 каплю фенола и встряхните. К вновь полученной эмульсии добавьте 1 каплю 2н раствора NаОН. Моментально образуется прозрачный раствор фенолята натрия, так как он хорошо растворяется в воде.

§10. Задачи для самостоятельного решения .

1. Напишите структурные формулы следующих соединений:

3-метил-2-пентанол; 2-метил-3-бутин-2-ол; 1-фенилпропанол-1.

2. Реакцией Гриньяра получите следующие спирты:

1) 2-метил-3-пентанол;

2) 2,3-диметил-3-пентанол;

3) 2,2-диметил-1-пропанол.

3. Получите гидратацией соответствующих этиленовых углеводородов

следующие спирты:

а) 2-метилпентанол-2; б) 3,3-диметилбутанол-2.

4. Напишите реакции окисления вторичного бутилового спирта;

2-метилбутанола-1.

5. Подвергните 2-пентанол дегидратации, затем продукт реакции окислите водным раствором перманганата калия. Полученное соединение обработайте уксусной кислотой. Напишите уравнения реакций и назовите все продукты.

6. Получите фенол из бензола и 1-бутена через стадию образования гидроперекиси втор.бутила.

7. Опишите схему следующих превращений:

8. Расположите следующие соединения в порядке убывания кислотных свойств:

На рисунке показана взаимосвязь различных методов производства фенола, а в таблице под теми же номерами приведены их технико-экономические показатели (в % относительно сульфонатного метода).

Рис. 1.1. Методы производства фенола

Таблица 1.3

Технико-экономические показатели производства фенола
Методы
Показатель 1 2 3 4 5 6
Капитальные затраты 100 83 240 202 208 202
Стоимость сырья 100 105 58 69 72 45
Себестоимость 100 96 70 73 76 56

Таким образом, наиболее целесообразным с экономической точки зрения является наиболее востребованный в настоящее время кумольный процесс. Ниже кратко описаны промышленные процессы, которые в то или иное время использовались для получения фенола.

1. Сульфонатный процесс был первым фенольным процессом, реализованным в промышленном масштабе фирмой «BASF» в 1899 г. Этот метод основан на сульфировании бензола серной кислотой с последующим щелочным плавлением сульфокислоты. Несмотря на применение агрессивных реагентов и образование большого количества отходов сульфита натрия, данный метод использовался в течение почти 80 лет. В США это производство было закрыто лишь в 1978 году.

2. В 1924 г. фирмой «Dow Chemical» был разработан процесс получения фенола, включающий реакцию хлорирования бензола и последующий гидролиз монохлорбензола (процесс каталитического гидролиза галогензамещенных бензолов ). Независимо аналогичная технология была разработана немецкой фирмой «I.G. Farbenindustrie Co». Впоследствии стадия получения монохлорбензола и стадия его гидролиза были усовершенствованы, и процесс получил название «процесс Рашига». Суммарный выход фенола по двум стадиям составляет 70-85%. Данный процесс был основным методом получения фенола в течение нескольких десятилетий.

3. Циклогексановый процесс , разработанный фирмой «Scientific Design Co.», основан на окислении циклогексана в смесь циклогексанона и циклогексанола, которая далее дегидрируется с образованием фенола. В 60-е годы фирма «Monsanto» в течение нескольких лет использовала этот метод на одном из своих заводов в Австралии, однако в дальнейшем перевела его на кумольный способ получения фенола.

4. В 1961 г. фирмой «Dow Chemical of Canada» был реализован процесс через разложение бензойной кислоты , это единственный способ синтеза фенола, основанный на использовании небензольного сырья. Обе реакции протекают в жидкой фазе. Первая реакция. окисление толуола. использовалась в Германии уже в период Второй мировой войны для получения бензойной кислоты. Реакция протекает в довольно мягких условиях с высоким выходом. Вторая стадия является более трудной вследствие дезактивации катализатора и низкой селективности по фенолу. Полагают, что проведение этой стадии в газовой фазе может сделать процесс более эффективным. В настоящее время этот метод используется на практике, хотя его доля в мировом производстве фенола составляет лишь около 5%.

5. Метод синтеза, по которому в наши дни получают большую часть производимого в мире фенола - кумольный процесс - открыт группой советских химиков во главе с профессором П. Г. Сергеевым в 1942 году. Метод основан на окислении ароматического углеводорода кумола (изопропилбензол) кислородом воздуха с последующим разложением получающейся гидроперекиси, разбавленной серной кислотой. В 1949 году в г. Дзержинске Горьковской области был введен в действие первый в мире кумольный завод. До этого гидроперекиси считались малостабильными промежуточными продуктами окисления углеводородов. Даже в лабораторной практике их почти не использовали. На Западе кумольный метод был разработан в конце 40-х годов и отчасти известен как процесс Хока, по имени немецкого ученого, позднее независимо открывшего кумольный путь синтеза фенола. В ромышленном масштабе этот метод стал впервые использоваться в США в начале 50-х годов. С этого времени на многие десятилетия кумольный процесс становится образцом химических технологий во всем мире.

Несмотря на прекрасно отлаженную технологию и длительный опыт эксплуатации, кумольный метод имеет ряд недостатков. Прежде всего это наличие взрывоопасного промежуточного соединения (гидропероксид кумола), а также многостадийность метода, что требует повышенных капитальных затрат и делает труднодостижимым высокий выход фенола в расчете на исходный бензол. Так, при выходе полезного продукта 95% на каждой из трех стадий итоговый выход составит лишь 86%. Приблизительно такой выход фенола и дает кумольный метод в настоящее время. Но самый важный и принципиально неустранимый недостаток кумольного метода связан с тем, что в качестве побочного продукта образуется ацетон. Это обстоятельство, которое первоначально рассматривалось как сильная сторона метода, становится все более серьезной проблемой, поскольку ацетон не находит эквивалентного рынка сбыта. В 90-х годах эта проблема стала особенно ощутимой после создания новых способов синтеза метилметакрилата путем окисления углеводородов С4, что резко сократило потребность в ацетоне. Об остроте ситуации говорит тот факт, что в Японии разработана технология, предусматривающая рецикл ацетона. С этой целью к традиционной кумольной схеме добавляются еще две стадии, гидрирование ацетона в изопропиловый спирт и дегидратация последнего в пропилен. Образующийся пропилен снова возвращают на стадию алкилирования бензола. В 1992 году фирма «Mitsui» пустила крупное производство фенола (200 тыс. т/год), основанное на этой пятистадийной кумольной технологии.


Рис. 1.2. Рецикл ацетона с получением пропилена

Предлагаются также другие сходные модификации кумольного метода, которые позволили бы смягчить проблему ацетона. Однако все они приводят к значительному усложнению технологии и не могут рассматриваться как перспективное решение проблемы. Поэтому исследования, ориентированные на поиск новых путей синтеза фенола, которые основывались бы на прямом окислении бензола, в последнее десятилетие приобрели особенно интенсивный характер. Работы ведутся главным образом в следующих направлениях: окисление молекулярным кислородом, окисление моноатомными донорами кислорода и сопряженное окисление. Рассмотрим более подробно направления поиска новых путей синтеза фенола.